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Quantumlike short-time behavior of a classical crystal
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We have performed a molecular-dynamics simulation of a face-centered-cubic Lennard-Jones crystal, and
studied its relaxation toward equilibrium and its microcanonical equilibrium dynamics through the computation
of the normal modes. At low temperature, the weak interaction among normal modes yields a very slow
relaxation of the fluctuation of the kinetic energy; this requires a new formulation of the measure of the
microcanonical specific heat at constant volume. This specific heat turns out to depend on the time of obser-
vation; for times of the order of 20 ps, its values are much nearer to the quantum ones than to the value 3R
predicted by the classical Dulong and Petit law. For longer observation times, the classical specific heat
progressively approaches 3R over most of the temperature range of the solid crystal, with the exception of the
lowest temperature range, where it still drops to values close to zero. The time dependence of the specific heat
of the crystal is similar to the behavior found in a supercooled liquid near the glass transition.
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I. INTRODUCTION

In computer experiments performed by molecul
dynamics~MD! simulation, equilibrium quantities and func
tions are evaluated by means of time averages on the tra
tory of the system in the phase space. Experience has sh
that the relaxation times of the computed quantities may v
over a wide range. It has been found, for example, that
Lennard-Jones crystal at low temperature the kinetic ene
relaxes in a time of a few ps, while its fluctuation relaxes
a time that is at least three orders of magnitude larger@1#.
Such a slow relaxation prevents the computation of the s
cific heat at constant volume in a MD experiment at const
energy, as the relevant formula is based on the fluctuatio
the kinetic energy@2#. The slowing down of the fluctuation i
due to the decoupling at low temperature of the norm
modes; this yields an onset of ordered motions and a los
ergodicity of the system.

A method to measure the specific heat which circumve
this shortcoming has been proposed@3#. In this work, it turns
out that the specific heat of a simple lattice goes to zero
very low temperature. This shows that quantumlike featu
may appear if modern developments of nonlinear class
dynamics are taken into consideration. In a recent paper,
rati and Galgani give a review of theoretical and compu
simulation results showing that classical physics—wh
properly formulated in the sense just mentioned—entails
deed some relevant quantumlike features@4#. While many of
the results they review have been derived in the past dec
their starting point is the famous computer experiment p
formed by Fermi, Pasta, and Ulam~FPU! 50 years ago@5#.
As is well known, the FPU computer experiment showed

*Author to whom correspondence should be addressed; ema
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unexpected feature in a chain of nonlinear oscillators, i
that at low energy there is no equipartition among norm
modes, notwithstanding the anharmonicity of the syste
With reference to that experiment, Carati and Galgani c
trast their own point of view with that of Izrailev and Chir
ikov @6#, who were the first to provide a clue to interpret th
new evidence, namely the existence of anenergy threshold
Ec(v), depending on the frequency of the initially excite
mode. In the view of@6#, when the energy is below th
threshold, the motion of the system is almost ordered~as
when the phase space is foliated in KAM tori!, while the
motion becomes chaotic when the energy is above
threshold. One relevant feature of this interpretation is t
the energy threshold should go to zero when the numbe
degrees of freedom~DOF’s! is increased; that is, in the the
modynamic limit the classical theory would hold in its trad
tional form, including equipartition among modes.

Carati and Galgani propose a different point of view. Th
stress the relevance of therate of thermalization, which de-
pends on the characteristic frequency of the DOF’s involv
in the energy exchange. The relaxation time toward equi
rium increases almost exponentially with the frequency
the DOF@7,8#, and at low temperature the system may n
have the time to thermalize within the observation perio
Moreover, this feature of the ‘‘revisited’’ classical framewo
should persist in the thermodynamic limit.

Because of the lack of thermalization of the hig
frequency degrees, which is equivalent to their freezing o
very long times~that depend on their frequency and on t
temperature!, ‘‘one should observe that the temperature
which freezing occurs~namely essentially the Debye tem
perature, where the specific heat exhibits a rather abrupt
cay! depends on the observation time, moving towards
low temperatures as the observation time is increased’’@4#.

We have performed a classical molecular-dynamics co
puter experiment on a realistic microcrystal, measuring
d-
©2003 The American Physical Society12-1
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specific heat at constant volume in the whole tempera
range below the fusion point. This specific heat turns ou
depend on the duration of the trajectory of the system in
phase space—that is, on the observation time—just in
way anticipated in@4#; moreover, when the temperature a
proaches zero the dynamics of the system undergoes a
sition with features similar to those of a glass transition.

In Sec. II, we present the model on which we perform
computer simulation. Section III is dedicated to the norm
modes representation of the system, and in Sec. IV we c
pare its thermodynamic properties to that of the real syst
In Sec. V, we deal with the short-time dynamical behavi
showing that it requires a redefinition of the classical spec
heat, which is given in Sec. VI. In Sec. VII, we give th
results of our computer experiments, and in Sec. VIII
draw an analogy between our findings and those of a liq
near a glass transition. In Sec. IX, we discuss our result

II. fcc LENNARD-JONES LATTICE

The system we chose to simulate the behavior of a c
sical crystal is a face-centered-cubic~fcc! lattice—with peri-
odic boundary conditions—ofN5512 particles interacting
through a Lennard-Jones~LJ! potential,

V~r !54eF S s

r D 12

2S s

r D 6G ;
the cutoff of the potential is set atr c52.746s, so that each
particle interacts with six shells of neighbors. This is know
to be a fairly realistic model for a rare-gas solid. In the fo
lowing, we will use the LJ parameters appropriate to argon
order to compare the results of our simulation to experim
tal data; these parameters ares53.405 Å ande5119.8kB ,
wherekB is Boltzmann’s constant.

We have given our system the shape of a nonorthogo
parallelepiped, in order to ease the computation of the n
mal modes. Letx̂, ŷ, andẑ be the unit vectors of the Carte
sian axes. When an atom is put at the origin of the axes,
primitive cell of the fcc lattice is composed by that atom a
three others, whose equilibrium positions are given by

a15a~ ŷ1 ẑ!/2; a25a~ ẑ1 x̂!/2; a35a~ x̂1 ŷ!/2,

wherea is the lattice parameter; the angle between any
of these vectors isp/3. The equilibrium positions of the 51
atoms are then given byR05n1a11n2a21n3a3 , with
n1 ,n2 ,n350,1...,75L21; they form a parallelepiped with
faces having Miller indices$21,1,1%, $1,21,1%, and$1,1,21%.
At low temperature,a55.274 Å51.549s for argon. The
width of the system is 4a, larger than 2r c : this abides by the
minimum image convention of MD systems with period
boundary conditions. We write the position of each atom

R~n!5R0~n!1u~n!,

where n[(n1 ,n2 ,n3) is an integer vector identifying the
atom at equilibrium inR0(n); u(n) is the displacement o
that atom from its equilibrium position. The Hamiltonian
the system can then be written as
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2
uu̇~n!u21 1

2 (
nÞ l

V@R~n!2R~ l!#; ~1!

in both sumsn runs over all atoms in the system, while in th
second suml[( l 1 ,l 2 ,l 3) runs over the first six shells o
neighbors~in the system or in its images produced by t
periodic boundary conditions! of the atoms labeled byn.

The equations of motion derived from the Hamiltonian~1!
have been integrated by means of the well-known Verlet
gorithm @9#, with a time step of 0.93310214 s. The total
energy was initially distributed at random among all pa
ticles, that is, among all normal modes. The system was
tially allowed to evolve for 104 time steps, before starting t
compute the time averages; this time was sufficient for
system to relax from the initial state, even at the low
simulated temperatures. The longest simulation runs la
105 time steps, corresponding to about 1 ns.

III. NORMAL MODES

We introduce the normal modes expanding the poten
energy in a Taylor series around the equilibrium positions
the atoms. We may then writeH5H01H8, where the inte-
grable part is

H05(
n

m

2
uu̇~n!u21 1

2 (
nÞ l

V@R0~n!2R0~ l!#

1(
n,l

(
a,b

ua~n!Aab~n,l!ub~ l!,

with a,b5x,y,z; here

Aab~n,l!5
]2V@R~n!2R~ l!#

]ua~n!]ub~ l! U
R0

whennÞ l, and

Aab~n,n!5 (
m~Þn!

]2V@R~n!2R~m!#

]ua~n!]ub~n!
U

R0

whenn5 l; the range form[(m1 ,m2 ,m3) is the same as for
l. H8 is the perturbative part of the Hamiltonian, entailin
derivatives of the potential of order higher than 2. The n
mal modes are then defined by

qs~k!5
1

L3/2(
n

u~n!•es~k!exp~2 i2pk•n/L !,

wherees(k) are the orthonormal eigenvectors of 333 ma-
trices, s51,2,3 are the polarization directions, an
k1 ,k2 ,k350,1, . . . , L21 define the components of a vect
in the reciprocal space:K5(2p/L)k @10,11#. The integrable
part of the Hamiltonian can now be expressed as
2-2
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H05
m

2 (
k

(
s

@ q̇s* ~k!q̇s~k!1vs
2~k!qs* ~k!qs~k!#

[(
k

(
s

Hs~k!,

where the frequenciesvs(k) are the eigenvalues cor
responding to the eigenvectorses(k) @10,11#: D(k)e(k)
5mv2(k)e(k), where

Dab~k!5(
l

Aab~n,l!expH i
2p

L
@k1~ l 12n1!1k2~ l 22n2!

1k3~ l 32n3!#J .

At low energy, the relative contribution of the perturbati
partH8 to the total Hamiltonian becomes negligible, and t
total Hamiltonian can be reduced approximatively to its h
monic partH0 .

In this approximation,Hs(k) is the total energy of the
mode characterized byvs(k). As the normal modes’ ampli
tudes and their time derivatives are complex variables, t
span a 12N-dimensional space, instead of the 6N-dimen-
sional space spanned by the atomic displacements and
time derivatives, that are real quantities. It turns out th
because of the periodic boundary conditions of the syst
each normal modeqs(k) has a twin modeqs(k8) such that
qs(k)5qs* (k8). The twin modes have the same polarizati
and the same frequency and, therefore, the same en
Hs(k)5Hs(k8). The relation between the components of t
wave vectors of the twin modes is 0→0, 1→7, 2→6,
3→5, 4→4. Thus, for example, normal modes correspon
ing to the same polarizations and, respectively, to compo
nents ~4,0,7! and ~4,0,1!, are twins. Some modes have n
twin, e.g., the mode~4,0,4!; but the imaginary component o
these modes is zero. The symmetry among modes red
the dimension of their phase space from 12N to 6N @11#.

The computation of the frequencies of the normal mo
of a fcc lattice found in the literature usually includes fir
and second neighbors@12,13#. We have extended it up to th
sixth neighbors. Our computation shows that the 1533 n
mal modes@51233, minus the three translational mod
(0)s] are divided in 75 groups; each group is characteriz
by a different frequency, and entails a number of norm
modes ranging between 3 and 48, with an average of a
20 modes.

IV. QUANTUM SPECIFIC HEAT

Our model has 512 atoms, and the interaction among
oms is extended to the sixth shell of neighbors. In orde
check how well this system approximates the real one,
have computed the specific heat per particle of argon
constant volume, using the quantum formula valid in t
harmonic approximation,
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Cv5
1

N (
k,s

1

kBT2

\2vs
2~k!

~eb\vs~k!21!2 eb\vs~k!, ~2!

whereb5(kBT)21 andkB is Boltzmann’s constant. In Fig
1, we report the low-temperature specific heat given by f
mula ~2! for our system, using the frequenciesvs(k) com-
puted as explained in the previous section. The compu
specific heat is in fairly good agreement with the experim
tal data @14#; this shows that our system, albeit small,
already a good representation of the thermodynamic limit.
a matter of fact, we have increased the size of our system
to N.104, and the results of Fig. 1 do not change in a
appreciable way. In the same figure we report a similar co
parison between formula~2! and the experimental data in th
range 0–80 K. These results show that the harmonic appr
mation is quite good up to temperatures just below the m
ing point of argon; they also confirm that our system is
good model for the real system.

V. SHORT-TIME BEHAVIOR

Our simulation of the LJ crystal is performed at consta
total energy and total volume; therefore, the time traject
samples a microcanonical ensemble in the phase space
such an ensemble, the appropriate formula to compute
specific heat per particle at constant volume is@2#

Cv5
3kB

2 F12
3N

2

^K2&mc2^K&mc
2

^K&mc
2 G21

, ~3!

whereK is the kinetic energy of the system and^ &mc is the
average in the microcanonical ensemble. Unfortunately
turns out that in systems such as the one at hand, the kin
energy has anomalous fluctuations at low energy, so that
mula ~3! can be used—with microcanonical averages
placed by time averages—only if the latter are of extraor
nary length@1#. The reason for this anomalous behavior
that at low energy the coupling among normal modes
different frequency~theH8 term of the Hamiltonian! is very
weak; the slow energy exchange yields a slow diffusion
the phase space, so that, in order to reproduce the micr

FIG. 1. Quantum specific heat per particle at constant volu
~in kB), for the 512-particle fcc system; LJ parameters appropr
to argon.n experimental data for solid argon@14#.
2-3
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nonical ensamble averages, the trajectories must be
tremely long as compared to the duration of a standard c
puter experiment.

This phenomenon is evident if one computes the ti
average of the energy entailed in each group of modes c
acterized by the same frequency. In Fig. 2 we report
average energy per modêH& of several groups atT
50.1 K, as a function of the simulation time. The resu
show clearly that there is no trend toward equipartitio
when the temperature is raised, a trend toward equiparti
appears, as shown in Fig. 3 and Fig. 4. A similar behav
was found before in other lattices@15#, and is related to the
transition from an Arnold diffusion to an Anosov diffusion i
the phase space.

It should be noticed that the lack of equipartition amo
normal modes at low temperature does not prevent quant
like the kinetic energy or the potential energy from reach
their ensemble average within times that are much sho
than the range of Figs. 2, 3, or 4. These quantities can
expressed as sums of homologous single-particle quant
and are therefore statistically ‘‘well behaved’’@16#. On the

FIG. 2. Average energy per mode^H& ~in e! of various groups of
normal modes, as a function of the duration of the average.
label on each line is the index of the group of modes. Higher
dexes correspond to higher frequencies.T50.1 K.

FIG. 3. As in Fig. 2, withT55 K.
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other hand, a quantity like the fluctuation of the kinetic e
ergy in formula~3! cannot be expressed as the sum of sing
particle quantities, and is therefore more affected by the l
of ergodicity of a finite-time trajectory in the phase space

We want to emphasize that because the time averag
the total kinetic energy reaches rapidly its equilibrium valu
even at low total energy, the temperature of the system
be defined in the usual way through this average of the
netic energy:T52^K&/3NkB , where^ & is the time average
We will discuss later how to interpret this parameter in t
low-temperature range, where there is no equipartition
energy among normal modes.

VI. CLASSICAL SPECIFIC HEAT

There is an alternate way of computing the specific hea
low temperature, which exploits just the weak coupli
among modes that hinders the use of formula~3! @3#. As the
modes exchange weakly when the total energy of the sys
is low, the whole system can be approximately decompo
in the sum of many small, weakly interacting subsystem
each subsystem being composed of a few normal mode
equal frequency. IfM is the number of subsystems,H(x)
.( j 51

M H j (xj ), wherex is a point of the phase spaceG, and
H j is a harmonic Hamiltonian depending only on the sub
of coordinates and momentaxj .

The probability distribution of the energy of the sma
subsystems is not effectively bound by the condition that
total energy of the system be constant, and is almost iden
in the microcanonical and in the canonical ensemble@17#.
The probability distribution law for small subsystems in t
microcanonical case being practically identical to the cano
cal one, we can assume in the present case that every s
subsystem of normal modes behaves canonically. The di
bution law of the whole system can then be written as

P~x!.)
j 51

M
e2bH j ~xj !

E
G
e2bH j ~xj !dxj

.

e
-

FIG. 4. As in Fig. 2, withT557 K.
2-4
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In this way, the probability of a state of the system
temperatureT is expressed as a product of independent
nonical probabilities—at the same temperature—of theM
subsystems; it is as if each subsystem were in contact w
thermal bath characterized by the temperature of the sys
~we will discuss this point further in the last section!. In this
approach, the thermal bath is composed of all other s
systems, and the thermal contact is realized by the an
monic partH8 of the Hamiltonian, which entails the interac
tion terms among normal modes, and which becom
negligible at low temperature.

Adopting this point of view, the heat capacity of the sy
tem is given by the sum of the canonical contributions of
small subsystems in which it is divided. In the canonic
ensemble, the specific heat per DOF is given, in units ofkB ,
by

cv5
1

3N

^H2&c2^H&c
2

kB
2T2 , ~4!

where H is the total energy and̂ &c is the average in the
canonical ensemble. Considering a group ofmi modes as a
weakly coupled subsystem of energyHi , its contribution to
the specific heat per DOF will be, replacing ensemble av
ages by time averages in Eq.~4!,

cv~ i !5
^Hi

2&2^Hi&
2

mikB
2T2 . ~5!

The specific heat per DOF for the whole system will th
be

cv5
1

3N23 (
i

cv~ i !mi . ~6!

ThenCv53cv , which we dub multicanonical specific hea
The term23 in the denominator is needed because the th
translational modes (0,0,0)s do not contribute to the specifi
heat, and are therefore not included in the sum.

Figure 1 shows that, when computing the specific he
the harmonic approximation is quite good up to temperatu
just below the melting point of argon; therefore, the point
view adopted in this section, which neglects the anharmo
terms of the Hamiltonian in computing the classical spec
heat, should be valid in the whole temperature range of
istence of an fcc LJ crystal.

VII. RESULTS OF THE COMPUTER EXPERIMENT

In Fig. 5, we show the main results of the present co
puter experiment, in the temperature range between 0 an
K. Together with the experimental data for the specific h
per particle at constant volume@14#, we report the values o
Cv computed through formulas~5! and ~6!, in which each
group of modes of the same frequency is considered to
subsystem; there are 75 such groups in our system. The
ues ofCv at short time (2.53103 time steps, equivalent to
about 23 ps! are shown with error bars given by the standa
deviations of the kinetic energy and of the energy fluctuat
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that enter formula~5!. For the long-time values (23104 time
steps, equivalent to about 186 ps!, the error bars are smalle
than the size of the symbol.

In Fig. 5 we report for comparison the quantum spec
heat computed in Sec. IV; as mentioned there, this spe
heat is practically not distinguishable from the experimen
one. For the shortest average time (2.53103 time steps!, the
specific-heat values found in the simulation lie quite near
the experimental curve, and definitely far from the classica
expected value of 3kB . We stress that after 2.53103 time
steps, the average total kinetic energy, and therefore the
perature, have already reached the equilibrium value.

On the other hand, after 23104 time steps, the pattern o
the values computed in the simulation has changed marke
With the exception of the temperature range belove 10 K,
multicanonical values are approaching the expected valu
3kB , and are clearly swerving from the experimental cur
Nevertheless, the lowest temperature range seems to ke
pattern that, even though different from the quantum one
also very different from the classical Dulong-Petit law. Th
can be seen in Fig. 6, where we report the multicanon
specific heat computed through formulas~5! and ~6! at T
50.1 K, the lowest simulated temperature, for average tim
up to 105 time steps. At this very low temperature, the ave

FIG. 5. Multicanonical specific heat per particle~in kB) com-
puted through formulas~5! and~6!: n, average over 2.53103 time
steps;h, average over 23104 time steps;–, experimental values
@14#. The error bars on the values measured after 23104 time steps
are smaller than the symbols used in the figure.

FIG. 6. Multicanonical specific heat~in kB) computed as in Fig.
5, as a function of the duration of the average.T50.1 K.
2-5
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aged specific heat converges to a value of about 0.45kB ; this
value is higher than the corresponding quantum value,
also much lower than the classically expected value of 3kB .

We have checked the robustness of our definition of m
ticanonical specific heat with regard to the composition
the subsystems described in the previous section. We h
implemented the same procedure used to derive the resu
Fig. 5, but the normal modes entailed in each of the
groups were chosen at random, paying no attention to t
frequency. The only exception were the conjugate mod
each pair being assigned to the same group. The numb
modes entailed in each group was the same as in Fig
where the groups were collected following their frequen
The values of the multicanonical specific heat computed
this way were practically indistinguishable from those of F
5 over the whole temperature range, and are not shown h

In order to check how far the multicanonical approa
could be pushed, we have applied the same procedure
another time, taking each pair of conjugate modes as a
system weakly coupled to the others. The values ofCv found
in this case are reported in Fig. 7, together with the data
Fig. 5, those computed breaking down the system in gro
of modes of equal frequency. Figure 7 shows that the
sets of values ofCv do not differ significantly. In the same
figure we have reported values ofCv computed with formula
~5! applied to a group entailing all normal modes; as
energy of the total system is constant, the variance of
energy of this group is equal to the variance ofH8, the
anharmonic part of the Hamiltonian. These results will
discussed in the last section.

Finally, we have verified that in the multicanonical a
proach the definition of the temperature is not critical. In
data reported so far, the temperature used in formula~5! has
been computed through the average kinetic energy of
whole system. One may wonder whether this is correc
low energy, where the normal modes are weakly coup
and the average kinetic energy per mode of a pair of co
gated modes may differ significantly from the average
netic energy per mode of the whole system. We have c
puted a second set ofCv values for the subsystems, ea
composed of a pair of conjugated modes, using in form
~5!, for each subsystem, a temperature defined through

FIG. 7. Multicanonical specific heat~in kB) for groups of modes
of equal frequency~n! and for pairs of conjugated modes~1!. Also
shown is the contribution to the specific heat of the anharmonic
of the Hamiltonian~h!.
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average kinetic energy of that pair of conjugated modes
Fig. 8, we compare this new set of values with the one
ported in Fig. 7, where the average temperature of the wh
system was used. Here again the two sets of values do
differ by any appreciable amount, showing that the definit
of temperature is not critical in the multicanonical approa

VIII. GLASSY BEHAVIOR

A time-dependent specific heat, as we find in Figs. 5 a
6, is a common feature in supercooled liquids approach
the glass transition@18,19#. It has been argued that, depen
ing on the cooling rate and on the method of the meas
there may be different ways to define a time-dependent~non-
equilibrium! specific heat@20#. The latter depends on th
ratio between the time of relaxation of the system and
time of observation. This ratio is called the Deborah num
~De!, and is used in rheology; the glass transition tempe
ture Tg for a given observation time is defined as the te
perature at which De51.

The time dependence of the specific heat of supercoo
liquids was detected through an experimental method ba
on oscillating thermal perturbations of given frequen
@18,19#; those results were later interpreted through the
drodynamic equations and shown to be related to
frequency-dependent viscosity@20#. In a computer simula-
tion of a LJ liquid undergoing the glass transition,
frequency-dependent specific heat was measured, which
hibited relaxation phenomena similar to those found in
real experiment@21#. This specific heat was measure
through the fluctuations of the kinetic energy of the syste
Zwanzig@20# has observed that because the kinetic energ
not a conserved quantity, the frequency dependence foun
that simulation reflected a property of the interconversion
kinetic and potential energy, more than a hydrodynamic p
cess~hydrodynamics dealing with conserved quantities su
as mass, momentum, and energy!.

In the case of our LJ crystal, the hydrodynamic picture
of little use, but the time dependence of the specific h
found in the paper at hand, and described in Sec. VII, hint
a similarity between the behavior of a liquid at the gla
transition and the behavior of our system at low temperatu

rt
FIG. 8. Multicanonical specific heat~in kB) for pairs of conju-

gated modes, computed using the temperature of the system~1! or
the temperatures of the subsystems~h!.
2-6
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How far can this similarity be taken? We have used a qu
titative frame of reference appropriate for the glass transi
to fit specific-heat data computed for the LJ fcc crystal st
ied in the present work.

In the experiments aimed at measuring the frequency
pendence of the specific heat, the data reflect an entan
ment of the latter with the thermal conductivity@18,19#. In
order to control a possible effect of the thermal conductiv
through a size factor due to the periodic boundary conditi
imposed on our system, we have used specific-heat
taken from a previous computer experiment@1#. In that work
a LJ fcc crystal was simulated with the same density and
same interaction potential as in the present case, but
sizes ranging from 256 to 32 768 particles.

In the supercooled liquid, the center of the glass tran
tion, corresponding to De51, is located at the peak fre
quencyf of the imaginary part of the productCpK, whereCp
is the specific heat at constant pressure andK is the thermal
conductivity. The temperature dependence of this peak
quency is fitted with the Vogel-Fulcher-Tamman~VFT!
equationf 5 f 0 exp@2A/(T2T0)#, whereT0 is the temperature
at which the relaxation time diverges@18#. In the LJ crystal,
we choose observation timest* , and for each such time w
measure the temperatureT* at which the equilibrium spe
cific heat at constant volume, when computed through
mula ~3!, diverges because the fluctuation of the kinetic e
ergy becomes twice as large as the expected equilibr
value ~see Fig. 4 of Ref.@1#!. Conversely, for eachT* the
corresponding timet* is the inverse of a frequency chara
teristic of the relaxation process involved in the transition
turns out that in our caseT050 ~see Fig. 2 of Ref.@3#!.
Therefore, the VFT equation in our case ist*
5t0* exp(A/T* ). We report in Table I the values ofT* as a
function of t* , for four distinct system sizes:N5256,
2048, 4096, and 32 768. The data do not exhibit any s
effect; a plot ofT* versust* shows that, besides the siste
with N52048, the points corresponding to the three ot
systems are very near to each other~see Fig. 4 of Ref.@1#!.
Fitting the data of Table I with the VFT equation yields va
ues oft0* ranging between 28 and 61 ps, while the values
A range between 2.14 and 0.84 K, depending on the siz
the system. The fit is not very good; nevertheless, it show
definite trend, analogous to that found in a glass transition
should be noted, however, that the frequencies correspon
to the observation times of Table I are in the ran

TABLE I. TemperatureT* ~K! corresponding to the divergenc
of the specific heat computed through the equilibrium formula~3!.
N is the number of particles in the system,t* is the observation
time in ps.
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108– 1010 Hz, much higher than in the case of the sup
cooled liquid.

IX. DISCUSSION AND CONCLUSION

In our computer experiment, the shortest time avera
have been performed over 2500 time steps, correspondin
23 ps. Even though this is not a long time for computi
equilibrium averages, it is long enough for the dynam
quantities that are ‘‘well behaved’’—such as the kinetic a
potential energy, or the structure factor—to converge to th
ensemble average. The specific heat behaves differently.
quantity is computed through the fluctuation of the kine
energy in the microcanonical ensemble, and through the fl
tuation of the total energy in the canonical ensemble. T
energies are summable functions, but their fluctuations
not have this property. Therefore, one can expect the mi
canonical specific heat to be ill-behaved, that is, to conve
to the equilibrium value in a time much longer than the o
needed by the kinetic energy@16#; indeed, this turns out to be
the case, with a singularity inCv still present aroundT
51.5 K after 104 time steps. This result is similar to previou
computer-simulation results found at low temperature in
microcrystals@1,3#.

As explained in Sec. VII, this difficulty can be circum
vented by computing the specific heat through a scheme
exploits just the weak energy exchange among normal mo
that makes the computation of a microcanonical specific h
so difficult. Measuring the classical specific heat in the m
ticanonical approach yields values that are remarkably c
to the experimental ones in the short-time range, that is,
times of the order of 25 ps. This new point of view narrow
the gap that has traditionally existed between the class
and the quantum framework, showing that the short-time
havior of a classical system may look similar to the quant
behavior. In the quantum framework, the normal modes
quantized oscillators. When the temperature tends to z
the thermal energy is not sufficient to excite in a significa
way the modes of higher frequency, which leads to a drop
the specific-heat values. In the present, revisited class
framework, when the temperature tends to zero the an
monic terms in the Hamiltonian become so small that
exchange of energy among normal modes~i.e., their excita-
tion! becomes negligible and, again, the specific-heat va
drop.

We have shown in Sec. VII that the multicanonical a
proach yields quite equivalent results when the composi
of the weakly coupled groups is changed, from modes
equal frequency to modes of any frequency. Moreover,
approach is robust also when the size of those group
reduced, down to the limit of a pair of conjugate modes,
classical equivalent of a quantized oscillator.

On the other hand, in order to apply the canonical co
putation of the specific heat to a weakly coupled group
modes, this group must be significantly smaller than the
of system; the latter acts as the thermal reservoir, interac
with the group of modes through the anharmonic terms
the Hamiltonian. In Fig. 7, we have reported also the spec
2-7
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heat given by formula~5! when one applies it to one grou
entailing all normal modes. As this group is almost as la
as the whole system, it is not astonishing that the use of
canonical formula gives a different result from the multic
nonical approach. In our simulation the total energy of
system is kept constant; therefore, the fluctuation of the
ergy of this group of modes equals the fluctuation of
anharmonic termH8 in the Hamiltonian. Thus the value fo
the canonical specific heat computed for the largest grou
modes is in fact equal to the contribution ofH8 to the total
multicanonical specific heat of the system. In other wor
the anharmonic part may be considered as yet another
system, weakly interacting with the rest of the system, t
is, with all harmonic groups of normal modes. Figure
shows that this further contribution does not alter the to
specific heat in the low-energy range. On the other ha
when this contribution is accounted for in the range above
K, it raises the total specific heat to values significan
A

.

s
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e
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t

l
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nearer to the value of 3kB anticipated by the Dulong-Peti
law. Therefore, a consistent classical multicanonical com
tation of the specific heat, taking into account harmonic
well as anharmonic contributions, reproduces the Dulo
Petit law at high temperature, but yields values that drop
zero at low temperature. The temperature range where
change between these two regimes takes place shifts to lo
values as the time over which the system is observed
creases.

This behavior is reminiscent of what is observed in li
uids near the glass transition, where a freezing of mo
takes place when the temperature is lowered. The decoup
among normal modes found in our simulation of a LJ crys
yields an effect on the thermodynamics similar to the o
produced by that freezing in a glassy transition, as fores
in @4#. However, further analysis is needed to clarify wheth
this similarity can be put on firm ground.
ys.
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