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Quantumlike short-time behavior of a classical crystal
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We have performed a molecular-dynamics simulation of a face-centered-cubic Lennard-Jones crystal, and
studied its relaxation toward equilibrium and its microcanonical equilibrium dynamics through the computation
of the normal modes. At low temperature, the weak interaction among normal modes yields a very slow
relaxation of the fluctuation of the kinetic energy; this requires a new formulation of the measure of the
microcanonical specific heat at constant volume. This specific heat turns out to depend on the time of obser-
vation; for times of the order of 20 ps, its values are much nearer to the quantum ones than to theRvalue 3
predicted by the classical Dulong and Petit law. For longer observation times, the classical specific heat
progressively approache®ver most of the temperature range of the solid crystal, with the exception of the
lowest temperature range, where it still drops to values close to zero. The time dependence of the specific heat
of the crystal is similar to the behavior found in a supercooled liquid near the glass transition.
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[. INTRODUCTION unexpected feature in a chain of nonlinear oscillators, i.e.,
that at low energy there is no equipartition among normal
In computer experiments performed by molecular-modes, notwithstanding the anharmonicity of the system.
dynamics(MD) simulation, equilibrium quantities and func- With reference to that experiment, Carati and Galgani con-
tions are evaluated by means of time averages on the trajetrast their own point of view with that of Izrailev and Chir-
tory of the system in the phase space. Experience has shovikov [6], who were the first to provide a clue to interpret the
that the relaxation times of the computed quantities may varmew evidence, namely the existence ofemergy threshold
over a wide range. It has been found, for example, that in £°(w), depending on the frequency of the initially excited
Lennard-Jones crystal at low temperature the kinetic energgode. In the view of[6], when the energy is below the
relaxes in a time of a few ps, while its fluctuation relaxes inthreshold, the motion of the system is almost ordefasl
a time that is at least three orders of magnitude lafd@¢r when the phase space is foliated in KAM forivhile the
Such a slow relaxation prevents the computation of the spenotion becomes chaotic when the energy is above the
cific heat at constant volume in a MD experiment at constanthreshold. One relevant feature of this interpretation is that
energy, as the relevant formula is based on the fluctuation dhe energy threshold should go to zero when the number of
the kinetic energy2]. The slowing down of the fluctuation is degrees of freedofDOF’s) is increased; that is, in the ther-
due to the decoupling at low temperature of the normaimodynamic limit the classical theory would hold in its tradi-
modes; this yields an onset of ordered motions and a loss dfonal form, including equipartition among modes.
ergodicity of the system. Carati and Galgani propose a different point of view. They
A method to measure the specific heat which circumventstress the relevance of thate of thermalizationwhich de-
this shortcoming has been propo$8dl In this work, it turns  pends on the characteristic frequency of the DOF’s involved
out that the specific heat of a simple lattice goes to zero an the energy exchange. The relaxation time toward equilib-
very low temperature. This shows that quantumlike featuresium increases almost exponentially with the frequency of
may appear if modern developments of nonlinear classicahe DOF[7,8], and at low temperature the system may not
dynamics are taken into consideration. In a recent paper, Cdrave the time to thermalize within the observation period.
rati and Galgani give a review of theoretical and computeiMoreover, this feature of the “revisited” classical framework
simulation results showing that classical physics—whershould persist in the thermodynamic limit.
properly formulated in the sense just mentioned—entails in- Because of the lack of thermalization of the high-
deed some relevant quantumlike featUrgs While many of  frequency degrees, which is equivalent to their freezing over
the results they review have been derived in the past decadeegry long times(that depend on their frequency and on the
their starting point is the famous computer experiment pertemperaturg “one should observe that the temperature at
formed by Fermi, Pasta, and UlafRPU) 50 years agd5].  which freezing occur§namely essentially the Debye tem-
As is well known, the FPU computer experiment showed arperature, where the specific heat exhibits a rather abrupt de-
cay) depends on the observation time, moving towards the
low temperatures as the observation time is increa$dfl”
* Author to whom correspondence should be addressed; email ad- We have performed a classical molecular-dynamics com-
dress: tenenbaum@romal.infn.it. puter experiment on a realistic microcrystal, measuring the
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specific heat at constant volume in the whole temperature m

range below the fusion point. This specific heat turns out to H=2 ?|U(n)|2+ 1> VIR(M—R()]; 1)

depend on the duration of the trajectory of the system in the " nz!

phase space—that is, on the observation time—just in the _ o

way anticipated "*[4], moreover, when the temperature ap- in both sums runs over all atoms in the SyStem, while in the

proaches zero the dynamics of the system undergoes a trapecond sum=(ly,l5,13) runs over the first six shells of

sition with features similar to those of a glass transition.  neighbors(in the system or in its images produced by the
In Sec. II, we present the model on which we perform thePeriodic boundary condition®f the atoms labeled by.

computer simulation. Section 11l is dedicated to the normal The equations of motion derived from the Hamilton{an

modes representation of the system, and in Sec. IV we conflave been integrated by means of the well-known Verlet al-

pare its thermodynamic properties to that of the real systenforithm [9], with a time step of 0.9810™'*s. The total

In Sec. V, we deal with the short-time dynamical behavior,energy was initially distributed at random among all par-

showing that it requires a redefinition of the classical specifidicles, that is, among all normal modes. The system was ini-

heat, which is given in Sec. VI. In Sec. VI, we give the tially allowed to evolve for 16 time steps, before starting to

results of our computer experiments, and in Sec. VIII wecompute the time averages; this time was sufficient for the

draw an anak)gy between our findings and those of a ||qu|($yStem to relax from the initial state, .even 'at the lowest
near a glass transition. In Sec. IX, we discuss our results. simulated temperatures. The longest simulation runs lasted

10° time steps, corresponding to about 1 ns.
Il. fcc LENNARD-JONES LATTICE

The system we chose to simulate the behavior of a clas- lil. NORMAL MODES

sical crystal is a face-centered-culficc) lattice—with peri- We introduce the normal modes expanding the potential
odic boundary conditions—oN=512 particles interacting energy in a Taylor series around the equilibrium positions of
through a Lennard-JonékJ) potential, the atoms. We may then writd =Hy+H’, where the inte-

grable part is
V(r)=4e

T

m
- Ho=2 —[0(n)|*+3 2 V[Ro(n) = Ry(1)]
the cutoff of the potential is set at=2.746r, so that each n n#l
particle interacts with six shells of neighbors. This is known
to be a fairly realistic model for a rare-gas solid. In the fol- +E E U (MA,g(n,Dugl),
lowing, we will use the LJ parameters appropriate to argon in nl ap
order to compare the results of our simulation to experimen-
tal data; these parameters are-3.405 A ande=119.%g, with «,8=X,Y,z; here
wherekg is Boltzmann’s constant.

We have given our system the shape of a nonorthogonal PV[R(n)— R(')]’
parallelepiped, in order to ease the computation of the nor- Aqp(nD)= au (maus) |
mal modes. LeR, ¥, andz be the unit vectors of the Carte- @ B
sian axes. When an atom is put at the origin of the axes, the
primitive cell of the fcc lattice is composed by that atom andyhenn=+1, and
three others, whose equilibrium positions are given by

Ro

a=a§+2)/2; a=a(z+)/2; a=a(X+9)/2, A= 3 *VIR(n) —R(m)]|
m(#n) é’ua(n)&uﬁ(n) |R
wherea is the lattice parameter; the angle between any two 0
of these vectors is/3. The equilibrium positions of the 512 _
atoms are then given byRy=n;a;+n,a,+ngas, with ~Wwhenn=l; the range fom=(m;,m;,ms) is the same as for
ny,n,,n3=0,1....7=L—1; they form a parallelepiped with I _H’ is the perturbatlve part of the I_—|am|lt0n|an, entailing
faces having Miller indice$—1,1,1, {1,—1,1, and{1,1,~ 1. derivatives of the potent_|al of order higher than 2. The nor-
At low temperature,a=>5.274 A=1.549 for argon. The ~Mal modes are then defined by

width of the system is &, larger than 2. : this abides by the

minimum image convention of MD systems with periodic 1 _

boundary conditions. We write the position of each atom as ds(k)= fm; u(n)-es(k)yexp(—i27k-n/L),

R(n)=Ro(n)+u(n),
whereey(k) are the orthonormal eigenvectors 0K3 ma-
where n=(n4,n,,n3) is an integer vector identifying the trices, s=1,2,3 are the polarization directions, and
atom at equilibrium inRy(n); u(n) is the displacement of k;,k,,k;=0,1,..., L—1 define the components of a vector
that atom from its equilibrium position. The Hamiltonian of in the reciprocal spacd =(2#/L)k [10,11]. The integrable
the system can then be written as part of the Hamiltonian can now be expressed as
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m . . 3. A
Ho=7 20 2 [85 (K)as(k) + wZ(K)ag (K)gs(k)] =
09 |
=2 2 Hy(k), -
k S 0.6 F
Cv | 0 20 40 60 80
where the frequenciesng(k) are the eigenvalues cor- 031
responding to the eigenvectoeg(k) [10,11: D(k)e(k) oo |
=mw?(k)e(k), where |
2w 0 5 10 15
D ap(K) =21 Aup(niDexp i ——[ky(l3—Nng)+Ka(l2—ny) T(X)
[ L

FIG. 1. Quantum specific heat per particle at constant volume
+ks(l3— ng)]] ) (in kg), for the 512-particle fcc system; LJ parameters appropriate
to argon.A experimental data for solid argdt4].

At low energy, the relative contribution of the perturbative c 1 1 hPwi(k) Bk
partH' to the total Hamiltonian becomes negligible, and the VTN £ kgT? (ePhes—1)2? '
total Hamiltonian can be reduced approximatively to its har-

monic partH,. where 8= (kgT) ! andkg is Boltzmann’s constant. In Fig.

In this approximationH(k) is the total energy of the 1, we report the low-temperature specific heat given by for-
mode characterized by (k). As the normal modes’ ampli- mula (2) for our system, using the frequencieg(k) com-
tudes and their time derivatives are complex variables, theputed as explained in the previous section. The computed
span a 1R-dimensional space, instead of thé&l@limen-  specific heat is in fairly good agreement with the experimen-
sional space spanned by the atomic displacements and thé# data[14]; this shows that our system, albeit small, is
time derivatives, that are real quantities. It turns out thatalready a good representation of the thermodynamic limit. As
because of the periodic boundary conditions of the systenft matter of fact, we have increased the size of our system up
each normal mode(k) has a twin modey.(k’) such that to N=10%, and the results of Fig. 1 do not change in any
as(k)=q% (k’). The twin modes have the same polarizationappreciable way. In the same figure we report a similar com-
and the same frequency and, therefore, the same energ)prison between formuld) and the experimental data in the
Hy(k)=H(k’). The relation between the components of therange 0—80 K. These results show that the harmonic approxi-
wave vectors of the twin modes is—00, 1—7, 2—6, mation is quite good up to temperatures just below the melt-
3—5, 4—4. Thus, for example, normal modes correspondng point of argon; they also confirm that our system is a
ing to the same polarizatios and, respectively, to compo- 900d model for the real system.
nents(4,0,7 and (4,0,1), are twins. Some modes have no
twin, e.g., the modé4,0,4; but the imaginary component of V. SHORT-TIME BEHAVIOR

these modes is zero. The symmetry among modes reduces Our simulation of the LJ crystal is performed at constant

the dimension of their phase space froniN1® 6N [11]. X : .
. . total energy and total volume; therefore, the time trajectory
The computation of the frequencies of the normal modes

of a fcc lattice found in the literature usually includes first samples a microcanonical ensemble in the phase space. For

and second neighbof&2,13. We have extended it up to the SUCh. an ensemble, t_he appropriate formula to compute the
sixth neighbors. Our computation shows that the 1533 nor—SpeCIfIC heat per particle at constant volumes

@)

mal modes[512x3, minus the three translational modes 3kg 3N (K2)pe— (K2 ] 71
(0)¢] are divided in 75 groups; each group is characterized C”:T 1- > —2—m° , 3
by a different frequency, and entails a number of normal (K)me

modes ranging between 3 and 48, with an average of abo

20 modes. WhereK is the kinetic energy of the system atdy, is the

average in the microcanonical ensemble. Unfortunately, it
turns out that in systems such as the one at hand, the kinetic
IV. QUANTUM SPECIFIC HEAT energy has anomalous fluc_tuatio_ns at low energy, so that for-
mula (3) can be used—with microcanonical averages re-
Our model has 512 atoms, and the interaction among aplaced by time averages—only if the latter are of extraordi-
oms is extended to the sixth shell of neighbors. In order taary length[1]. The reason for this anomalous behavior is
check how well this system approximates the real one, w¢hat at low energy the coupling among normal modes of
have computed the specific heat per particle of argon, adifferent frequencythe H’ term of the Hamiltoniahis very
constant volume, using the quantum formula valid in theweak; the slow energy exchange yields a slow diffusion in
harmonic approximation, the phase space, so that, in order to reproduce the microca-
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FIG. 2. Average energy per modd) (in €) of various groups of 0 50 100 150 200
normal modes, as a function of the duration of the average. The duration (ps)
label on each line is the index of the group of modes. Higher in- P
dexes correspond to higher frequenciés:0.1 K. FIG. 4. As in Fig. 2, withT=57 K.

nonical ensamble averages, the trajectories must be ewther hand, a quantity like the fluctuation of the kinetic en-
tremely long as compared to the duration of a standard comergy in formula(3) cannot be expressed as the sum of single-
puter experiment. particle quantities, and is therefore more affected by the lack

This phenomenon is evident if one computes the timeof ergodicity of a finite-time trajectory in the phase space.
average of the energy entailed in each group of modes char- We want to emphasize that because the time average of
acterized by the same frequency. In Fig. 2 we report théhe total kinetic energy reaches rapidly its equilibrium value,
average energy per modéd) of several groups aff  even at low total energy, the temperature of the system can
=0.1K, as a function of the simulation time. The resultsbe defined in the usual way through this average of the ki-
show clearly that there is no trend toward equipartition;netic energyT=2(K)/3Nkg, where( ) is the time average.
when the temperature is raised, a trend toward equipartitioMve will discuss later how to interpret this parameter in the
appears, as shown in Fig. 3 and Fig. 4. A similar behaviotow-temperature range, where there is no equipartition of
was found before in other lattic§45], and is related to the energy among normal modes.
transition from an Arnold diffusion to an Anosov diffusion in
the phase space. N VI. CLASSICAL SPECIFIC HEAT

It should be noticed that the lack of equipartition among
normal modes at low temperature does not prevent quantities There is an alternate way of computing the specific heat at
like the kinetic energy or the potential energy from reachinglow temperature, which exploits just the weak coupling
their ensemble average within times that are much shortegmong modes that hinders the use of form(@g[3]. As the
than the range of Figs. 2, 3, or 4. These quantities can b&odes exchange weakly when the total energy of the system
expressed as sums of homologous single-particle quantitiets, low, the whole system can be approximately decomposed
and are therefore statistically “well behaveflt6]. On the in the sum of many small, weakly interacting subsystems,
each subsystem being composed of a few normal modes of
equal frequency. IM is the number of subsystemsl,(x)

0.11 | zEJM:lHj(xj), wherex is a point of the phase spate and
i H; is a harmonic Hamiltonian depending only on the subset
0.10 - of coordinates and momens.
0.09 The probability distribution of the energy of the small
Tl subsystems is not effectively bound by the condition that the
0.08 } total energy of the system be constant, and is almost identical
<H> s in the microcanonical and in the canonical ensenjlilé.
0.07 | The probability distribution law for small subsystems in the
i microcanonical case being practically identical to the canoni-
0.06 F cal one, we can assume in the present case that every small
0.05 [ subsystem of normal modes behaves canonically. The distri-
i bution law of the whole system can then be written as
0.04 L
0 50 100 150 200 M e PH(y)
duration (ps) P(x)= H [
= f e AH9dx.
FIG. 3. As in Fig. 2, withT=5 K. r !
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In this way, the probability of a state of the system at a0 F
temperaturerl is expressed as a product of independent ca- ' o Ba Ooq b 8P 3 2
nonical probabilities—at the same temperature—of ke 5T an
subsystems; it is as if each subsystem were in contact with a 20 [
thermal bath characterized by the temperature of the system sk
(we will discuss this point further in the last sectiom this Cy L0 [
approach, the thermal bath is composed of all other sub- ’
systems, and the thermal contact is realized by the anhar- 05T
monic partH’ of the Hamiltonian, which entails the interac- 0.0 [
tion terms among normal modes, and which becomes [ e

negligible at low temperature.

Adopting this point of view, the heat capacity of the sys-
tem is given by the sum of the canonical contributions of the
small subsystems in which it is divided. In the canonical FIG. 5. Multicanonical specific heat per partidie kg) com-
ensemble, the specific heat per DOF is given, in unitegaf  puted through formulaé) and(6): A, average over 2:81C° time

0 10 20 30 40 50 60 70
TK)

by steps;d, average over & 10* time steps;_, experimental values
[14]. The error bars on the values measured afted@* time steps
1 (H?)—(H)2 4 are smaller than the symbols used in the figure.
“TINT KT @

that enter formuld5). For the long-time values (210* time

whereH is the total energy and) is the average in the steps, equivalent to about 186)pthe error bars are smaller
canonical ensemble. Considering a groupmgfmodes as a  than the size of the symbol.

weakly coupled subsystem of enerty, its contribution to In Fig. 5 we report for comparison the quantum specific

the specific heat per DOF will be, replacing ensemble averheat computed in Sec. IV; as mentioned there, this specific

ages by time averages in E@), heat is practically not distinguishable from the experimental
(H-2>—(H->2 one. 'F.or the shortest average time. (>QB)3. timg stepi& the

c,(i)=—"— " (5) specific-heat values found in the simulation lie quite near to

v m;k5T? the experimental curve, and definitely far from the classically

- _ expected value of ;. We stress that after 2610° time
The specific heat per DOF for the whole system will thensteps, the average total kinetic energy, and therefore the tem-

be perature, have already reached the equilibrium value.
On the other hand, after210* time steps, the pattern of
c = 1 c,(ihm . (6) the values computed in the simulation has changed markedly.
v 3N-39 ! With the exception of the temperature range belove 10 K, the

multicanonical values are approaching the expected value of

ThenC,=3c,, which we dub multicanonical specific heat. 3ky, and are clearly swerving from the experimental curve.
The term—3 in the denominator is needed because the threflevertheless, the lowest temperature range seems to keep a
translational modes (0,0,93l0 not contribute to the specific pattern that, even though different from the quantum one, is
heat, and are therefore not included in the sum. also very different from the classical Dulong-Petit law. This

Figure 1 shows that, when computing the specific heatcan be seen in Fig. 6, where we report the multicanonical
the harmonic approximation is quite good up to temperaturespecific heat computed through formulé® and (6) at T
just below the melting point of argon; therefore, the point of=0.1 K, the lowest simulated temperature, for average times

view adopted in this section, which neglects the anharmonigp to 1¢ time steps. At this very low temperature, the aver-
terms of the Hamiltonian in computing the classical specific

heat, should be valid in the whole temperature range of ex-

. 0.7
istence of an fcc LJ crystal. o |
0.5 [
VII. RESULTS OF THE COMPUTER EXPERIMENT oa b “‘“
In Fig. 5, we show the main results of the present com- c, 03
puter experiment, in the temperature range between 0 and 60 02 |
K. Together with the experimental data for the specific heat o1 b
per particle at constant volunié&4], we report the values of 00 | s
C, computed through formula) and (6), in which each [
group of modes of the same frequency is considered to be a 0 200 400 600 800

subsystem; there are 75 such groups in our system. The val-
ues ofC, at short time (2.% 10° time steps, equivalent to
about 23 psare shown with error bars given by the standard FIG. 6. Multicanonical specific hedin kg) computed as in Fig.
deviations of the kinetic energy and of the energy fluctuatiors, as a function of the duration of the average:0.1 K.

duration (ps)
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FIG. 7. Multicanonical specific hedin kg) for groups of modes
of equal frequencyA) and for pairs of conjugated modés). Also FIG. 8. Multicanonical specific hedin kg) for pairs of conju-
shown is the contribution to the specific heat of the anharmonic pargated modes, computed using the temperature of the systemor
of the Hamiltonian(O). the temperatures of the subsystefns.

aged specific heat converges to a value of aboutk@.4fhis  average kinetic energy of that pair of conjugated modes. In
value is higher than the corresponding quantum value, bufig. 8, we compare this new set of values with the one re-
also much lower than the classically expected valuekgf.3 ported in Fig. 7, where the average temperature of the whole
We have checked the robustness of our definition of mulsystem was used. Here again the two sets of values do not
ticanonical specific heat with regard to the composition ofdiffer by any appreciable amount, showing that the definition
the subsystems described in the previous section. We hawid temperature is not critical in the multicanonical approach.
implemented the same procedure used to derive the results of
Fig. 5, but the normal modes entailed in each of the 75
groups were chosen at random, paying no attention to their
frequency. The only exception were the conjugate modes, A time-dependent specific heat, as we find in Figs. 5 and
each pair being assigned to the same group. The number 6f is a common feature in supercooled liquids approaching
modes entailed in each group was the same as in Fig. Bhe glass transitiofl8,19. It has been argued that, depend-
where the groups were collected following their frequency.ing on the cooling rate and on the method of the measure,
The values of the multicanonical specific heat computed inthere may be different ways to define a time-depen@wn-
this way were practically indistinguishable from those of Fig.equilibrium) specific heaf20]. The latter depends on the
5 over the whole temperature range, and are not shown hereatio between the time of relaxation of the system and the
In order to check how far the multicanonical approachtime of observation. This ratio is called the Deborah number
could be pushed, we have applied the same procedure yéDe), and is used in rheology; the glass transition tempera-
another time, taking each pair of conjugate modes as a suldre T, for a given observation time is defined as the tem-
system weakly coupled to the others. The value§ pfound  perature at which De 1.
in this case are reported in Fig. 7, together with the data of The time dependence of the specific heat of supercooled
Fig. 5, those computed breaking down the system in groupliquids was detected through an experimental method based
of modes of equal frequency. Figure 7 shows that the twmn oscillating thermal perturbations of given frequency
sets of values o€, do not differ significantly. In the same [18,19; those results were later interpreted through the hy-
figure we have reported values @f computed with formula drodynamic equations and shown to be related to a
(5) applied to a group entailing all normal modes; as thefrequency-dependent viscosif20]. In a computer simula-
energy of the total system is constant, the variance of théon of a LJ liquid undergoing the glass transition, a
energy of this group is equal to the variance kf, the frequency-dependent specific heat was measured, which ex-
anharmonic part of the Hamiltonian. These results will behibited relaxation phenomena similar to those found in the
discussed in the last section. real experiment[21]. This specific heat was measured
Finally, we have verified that in the multicanonical ap- through the fluctuations of the kinetic energy of the system.
proach the definition of the temperature is not critical. In allZwanzig[20] has observed that because the kinetic energy is
data reported so far, the temperature used in forrfR)ldas  not a conserved quantity, the frequency dependence found in
been computed through the average kinetic energy of ththat simulation reflected a property of the interconversion of
whole system. One may wonder whether this is correct akinetic and potential energy, more than a hydrodynamic pro-
low energy, where the normal modes are weakly coupledgess(hydrodynamics dealing with conserved quantities such
and the average kinetic energy per mode of a pair of conjuas mass, momentum, and energy
gated modes may differ significantly from the average ki- In the case of our LJ crystal, the hydrodynamic picture is
netic energy per mode of the whole system. We have comef little use, but the time dependence of the specific heat
puted a second set @, values for the subsystems, each found in the paper at hand, and described in Sec. VII, hints at
composed of a pair of conjugated modes, using in formula similarity between the behavior of a liquid at the glass
(5), for each subsystem, a temperature defined through thieansition and the behavior of our system at low temperature.

VIIl. GLASSY BEHAVIOR
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TABLE I. TemperatureT* (K) corresponding to the divergence 10—10!° Hz, much higher than in the case of the super-
of the specific heat computed through the equilibrium form@la  ggled liquid.
N is the number of particles in the systet, is the observation

time in ps.
N IX. DISCUSSION AND CONCLUSION
r* 256 2048 4096 32768 In our computer experiment, the shortest time averages
0 587 598 5 80 583 have been performed over 2500 time steps, corresponding to
200 1'63 1'82 1'50 1'43 23 ps. Even though this is not a long time for computing
1000 0'53 0'81 0'55 0'48 equilibrium averages, it is long enough for the dynamic
3000 0'27 0' " 0'20 0'19 quantities that are “well behaved”—such as the kinetic and

potential energy, or the structure factor—to converge to their
ensemble average. The specific heat behaves differently. This
L quantity is computed through the fluctuation of the kinetic
How far can this similarity be taken? We have used a quangnergy'in the microcanonical ensemble, and through the fluc-
titative frame of reference appropriate for the glass transition,~iion of the total energy in the canonical ensemble. The
to fit specific-heat data computed for the LJ fcc crystal studgpergies are summable functions, but their fluctuations do
led in the present work. _ not have this property. Therefore, one can expect the micro-
In the experiments aimed at measuring the frequency dsynonical specific heat to be ill-behaved, that is, to converge
pendence of the specific heat, the data reflect an entanglgs the equilibrium value in a time much longer than the one

ment of the latter with.the thermal conductivitg8,19. N heeded by the kinetic ener§¥6]; indeed, this turns out to be
order to control a possible effect of the thermal conductivityiha case” with a singularity itC, still present aroundr
L] v

through a size factor due to the periodic boundary conditions_ 1.5 K after 10 time steps. This result is similar to previous

imposed on our _system, we have u_sed specific-heat d""Eébmputer-s:imulation results found at low temperature in LJ
taken from a previous computer experimghf In that work microcrystalg[1,3]

a LJ fcc crystal was simulated with the same density and the As explained in Sec. VII, this difficulty can be circum-

same interaction potential as in the present case, but Witheied by computing the specific heat through a scheme that
sizes ranging from 256 to 32768 particles. _exploits just the weak energy exchange among normal modes
_In the supercooled liquid, the center of the glass transiy, makes the computation of a microcanonical specific heat
tion, corresponding to Del, is located at the peak fre- o gitficylt. Measuring the classical specific heat in the mul-
quencyf of the imaginary part of the produ€,K, whereC, — icanonical approach yields values that are remarkably close
is the specific heat at constant pressure lanid the thermal 5 the experimental ones in the short-time range, that is, for
conductivity. The temperature dependence of this peak frégmes of the order of 25 ps. This new point of view narrows
quency is fitted with the Vogel-Fulcher-TammaWFT)  he gap that has traditionally existed between the classical
equationf = fo exf —A/(T—Tg)], whereTy is the temperature 54 the quantum framework, showing that the short-time be-
at which the relaxation time diverges8]. In the LJ crystal,  phayior of a classical system may look similar to the quantum
we choose observation times, and for each such time we pepayior. In the quantum framework, the normal modes are
measure the temperatufie’ at which the equilibrium spe-  qantized oscillators. When the temperature tends to zero,
cific heat at constant volume, when computed through forye thermal energy is not sufficient to excite in a significant
mula (3), dlverges.because the fluctuation of the kmeyp eNyvay the modes of higher frequency, which leads to a drop of
ergy becomes twice as large as the expected equilibriunhe gpecific-heat values. In the present, revisited classical
value (see Fig. 4 of Ref[1]). Conversely, for eaci* the  framework, when the temperature tends to zero the anhar-
corresponding time™ is the inverse of a frequency charac- nonjc terms in the Hamiltonian become so small that the
teristic of the relaxation process involved in the transition. ltexchange of energy among normal modies., their excita-
turns out that in our cas&,=0 (see Fig. 2 of Ref[3]).  tjon) becomes negligible and, again, the specific-heat values
Therefore, the VFT equation in our case "  grgp,

=15 exp@/T*). We report in Table | the values df* as a We have shown in Sec. VII that the multicanonical ap-
function of t*, for four distinct system sizes:N=256, proach yields quite equivalent results when the composition
2048, 4096, and 32768. The data do not exhibit any sizef the weakly coupled groups is changed, from modes of
effect; a plot of T* versust* shows that, besides the sistem equal frequency to modes of any frequency. Moreover, the
with N=2048, the points corresponding to the three othefapproach is robust also when the size of those groups is
systems are very near to each otfeee Fig. 4 of Ref[1]).  reduced, down to the limit of a pair of conjugate modes, the
Fitting the data of Table | with the VFT equation yields val- classical equivalent of a quantized oscillator.

ues oft§ ranging between 28 and 61 ps, while the values of On the other hand, in order to apply the canonical com-
A range between 2.14 and 0.84 K, depending on the size gjutation of the specific heat to a weakly coupled group of
the system. The fit is not very good; nevertheless, it shows eodes, this group must be significantly smaller than the rest
definite trend, analogous to that found in a glass transition. lof system; the latter acts as the thermal reservoir, interacting
should be noted, however, that the frequencies correspondingith the group of modes through the anharmonic terms of
to the observation times of Table | are in the rangethe Hamiltonian. In Fig. 7, we have reported also the specific
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heat given by formuld5) when one applies it to one group nearer to the value of K anticipated by the Dulong-Petit

entailing all normal modes. As this group is almost as largdaw. Therefore, a consistent classical multicanonical compu-
as the whole system, it is not astonishing that the use of theation of the specific heat, taking into account harmonic as
canonical formula gives a different result from the multica-well as anharmonic contributions, reproduces the Dulong-
nonical approach. In our simulation the total energy of thepetit law at high temperature, but yields values that drop to
system is kept constant; therefore, the fluctuation of the enyer at low temperature. The temperature range where the

ergy of this group of modes equals the fluctuation of theghange between these two regimes takes place shifts to lower
anharmonic ternH’ in the Hamiltonian. Thus the value for \,5jues as the time over which the system is observed in-

the canonical specific heat computed for the largest group qfa5¢es.
modes is in fact equal to the contribution Igf to the total This behavior is reminiscent of what is observed in lig-

tmhumcnatlnormcarl\li Speﬂf'r?] he%t of t:ei dsyrstc?m. In tothrt]art;]/vorrds ids near the glass transition, where a freezing of modes
€ anharmonic part may be considered as yet anotne SuFakes place when the temperature is lowered. The decoupling
system, weakly interacting with the rest of the system, tha

is, with all harmonic groups of normal modes. Figure ~among normal modes found in our simulation of a LJ crystal

shows that this further contribution does not alter the totaP"e'dS an effect on the thermodynamics similar to the one

specific heat in the low-energy range. On the other handaroduced by that freezing in a glassy transition, as foreseen

when this contribution is accounted for in the range above 5¢! [4)- However, further analysis is needed to clarify whether

K, it raises the total specific heat to values significantlythis similarity can be put on firm ground.
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